Trust model for EMAM how can it help our project

Victoriano Giralt proxying Milan Sova

CESNET Central ICT Services University of Málaga

RS³G Mobility Coding Camp Barcelona March 24th 2011

Outline

- 3 Client node security
- 4 Server node security

Intro	Node	Client	Server	Registry
Context				
starting point				

How do we want security in our system

- Features we need
 - Integrity
 - Confidentiality
 - Authenticity
- Features we do not need
 - Non-repudiation
- Security provided by transport
 - Transport Layer Security (TLS)

Intro	Node	Client	Server	Registry
Integrity part of the channe	l			

TLS provides integrity on the transmission channel

- Recipient will notice message modifications in transit
- No special measures required

Intro	Node	Client	Server	Registry
Confidenti	ality			
part of the chan	nel			

TLS provides confidentiality on the transmission channel

- Transport is encrypted
- Only end-points can see message content
- No special measures required

Intro	Node	Client	Server	Registry
Authenticity channel setup also	helps			

The TLS certificates can be put to use here

- Peers can be identified by way of their TLS certificates
- Peer authorisation can be based on TLS certificates
- Number of accepted certificate issuing authorities (CAs) should be limited

Intro	Node	Client	Server	Registry
Authoris	sation			
TLS to the r	escue again			

EMAM node TLS certificates can

- Identify the node by the certificate Subject
- The registry can provide extra information
 - Node owner organisation
 - Node acceptable roles
 - Consumer
 - Provider

• ...

Common configuration

security setup for all nodes

TLS stack configuration

- Use and accept only strong cipher suites
 - TLS RSA WITH AES 256 CBC SHA
 - TLS RSA WITH AES 256 CBC SHA256
- Clients: accept only peer certificates from trusted CAs
- Servers: request only client certificates from trusted CAs
- Use certificates from a trusted CA
- Trusted CAs:
 - TERENA Certificate Service (TCS)

	Node	Client	Server	Registry
Trust an	chor tarter pump			

Every node stores the certificate Subject(s) of the EMAM registry node(s) in local configuration

(CC) BY - NC - SA Milan Sova by way of Victoriano Giralt

Trust model for EMAM

CESNET / U. Málaga

	Node	Client	Server	Registry
TLS Serv	er Author	risation by Clier	nt	

Steps to start a conversation, or not

- get ServerURL and server certificate subject (SSubjectExpected) from EMAM registry
- connect to the Server using TLS
- extract the server certificate from TLS stack
- extract subject (SSubject) from the certificate
- SSubject = SSubjectExpected ?
 - = Authorise
 - \neq Reject

	Node	Client	Server	Registry
TLS Server	Authorisatio	n by Client		

```
(SServerExpected, ServerURI) = readRegistry(org);
ServerCert = TLSconnect(ServerURI);
SSubject = getSubject(ServerCert);
if (not(DNequal(SSubject, SSubjectExpected))
return NOT_AUTHORIZED;
```


(CC) BY - NC - SA Milan Sova by way of Victoriano Giralt

	Node	Client	Server	Registry
TLS Clie	ent Authoris	ation by Serve	er	

Steps to continue a conversation, or not

- Accept TLS connection
- Extract client certificate from TLS stack
- Extract the certificate subject from the certificate
- Get client information from EMAM registry
- Use the client information with request ACL is the client authorised to do what it wants?

Node	Client	Server	Registry

TLS Client Authorisation by Server

in pseudocode (variant 1)

```
connection = TLSaccept();
CCert = getCertificate(connection);
CSubject = getSubject(CCert);
request = getRequest(connection);
COrg = readReg(CSubject);
if (not(requestAllowed(request, COrg))
return NOT_AUTHORIZED;
```

CESNET

Node	Client	Server	Registry

TLS Client Authorisation by Server

in pseudocode (variant 2)

```
connection = TLSaccept();
CCert = getCertificate (connection);
                                                      2
CSubject = getSubject(CCert);
                                                      3
                                                      4
request = getRequest(connection);
                                                      5
COrg = getOrg(request);
                                                      6
// is the client registered to act
// on behalf of the organization?
match = checkRegistry(COrg, CSubject);
                                                      8
if (not(match)) return NOT AUTHORIZED;
                                                      9
if (not(requestAllowed(request, COrg))
                                                      10
  return NOT AUTHORIZED:
```

	Node	Client	Server	Registry
Registr	y authentica the trust anchor?	tion by Nodes	3	

Finding partners in a secure way

- Get the Registry certificate subject (*RegSubject*) and location from local configuration
- Onnect to the Registry using TLS
- Extract the server certificate from TLS stack
- Extract subject SSubject from the certificate
- SSubject = RegSubject ?
 - Authenticate
 - \neq Reject

	Node	Client	Server	Registry
Registry au	thentication b	oy Nodes		

```
(RegSubject, RegURI) = readConfig(reg);
ServerCert = TLSconnect(RegURI);
SSubject = getSubject(ServerCert);
if (not(DNequal(SSubject, RegSubject))
return NOT_AUTHENTICATED;
```


Node	Client	Server	Registry

Thank you

(CC) BY - NC - SA Milan Sova by way of Victoriano Giralt

CESNET / U. Málaga

Trust model for EMAM

Let's start the fun!

(CC) BY - NC - SA Milan Sova by way of Victoriano Giralt

Trust model for EMAM

CESNET / U. Málaga